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The classical Stackelberg game is extended to boundedly rational price Stackelberg game, and the dynamic duopoly game model is
described in detail. By using the theory of bifurcation of dynamical systems, the existence and stability of the equilibrium points
of this model are studied. And some comparisons with Bertrand game with bounded rationality are also performed. Stable region,
bifurcation diagram, The Largest Lyapunov exponent, strange attractor, and sensitive dependence on initial conditions are used to
show complex dynamic behavior. The results of theoretical and numerical analysis show that the stability of the price Stackelberg
duopoly game with boundedly rational players is only relevant to the speed of price adjustment of the leader and not relevant to
the follower’s. This is different from the classical Cournot and Bertrand duopoly game with bounded rationality. And the speed of
price adjustment of the boundedly rational leader has a destabilizing effect on this model.

1. Introduction

In the oligopolistic market, oligopoly firms compete in
quantity or price. We all know that Cournot model [1] is one
of the most famous quantity game models, in which all firms
(players) are provided with naive expectations. Presently,
boundedly rational quantity oligopoly game has been studied
widely, and a player can choose his expectation rule from
three different expectations: naive, bounded rational, and
adaptive [2, 3]. Many duopoly quantity games with homo-
geneous or heterogeneous players have been studied under
linear or nonlinear demand function and linear or nonlinear
cost functions [2–7]. Similarly, some researchers have studied
all sorts of triopoly quantity game models [8–13]. These
studies find that there are some complex dynamic behaviors
such as bifurcation and chaos in the oligopoly quantity game
model.

Compared with quantity competition, maybe price com-
petition is more general in a real market. One of the most
classical price game models is the Bertrand model [14]. In
Bertrand model, each firm will try to reduce its product
price, until its products are selling at no profit. This result

is called Bertrand paradox. However, the Bertrand paradox
rarely appears in practice. One of the reasons is that com-
pletely homogeneous product is almost nonexistent. So, one
way of avoiding the paradox is to allow the firms to sell
differentiated products [15]. Similar to quantity competition,
boundedly rational duopoly and triopoly price game models
with differentiated products have been studied in [16–19].

In the above mentioned quantity and price game models,
the one-short games are static; that is, each of the players in
the game determines their quantity or price at the same time.
However, dynamic game or sequential game is very common
in the real market. We all know that the most classical
sequential game is Stackelberg game [20, 21] in which one
firm, the leader, commits to a strategy first and publicly, and
then the remaining firms, the followers, observe the leader’s
choice and make their decisions. The original Stackelberg
game model is a quantity game with homogeneous product.
Later, it was extended to the differentiated products for both
quantity andprice game.Vives [22] summarized the literature
about the Stackelberg game model and pointed out that the
relevant literature took the quantity for decision variable
mostly. Until now there is little literature on price Stackelberg
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game. Consequently, there is no result for boundedly rational
price Stackelberg in a differentiated products market. And its
dynamic has not been studied.This paper aims to fill this gap.

This paper is organized as follows. In Section 2, the price
Stackelberg duopoly game model with boundedly rational
players is briefly described. The local stability condition of
the equilibrium point is discussed in Section 3. In Section 4,
numerical simulations are used to demonstrate the complex
dynamics of our model. Finally, the conclusion of this paper
is provided in Section 5.

2. The Model

Weconsider an oligopolymarket served by two firms produc-
ing differentiated products. The two firms compete in price.
Firm 1, as the leader, chooses a price 𝑝

1
first, and firm 2, as the

follower, observes𝑝
1
then chooses a price𝑝

2
. Let𝑝

𝑖
(𝑛) denote

the price of 𝑖th firm, 𝑖 = 1, 2 during period 𝑛 = 0, 1, 2, . . .. The
quantity each firm sells𝑄

𝑖
, a linear inverse demand function,

is determined by the following equations [15, 21]:

𝑄
1
= 𝑎 − 𝑏𝑝

1
+ 𝑑𝑝
2
,

𝑄
2
= 𝑎 − 𝑏𝑝

2
+ 𝑑𝑝
1
,

(1)

where 𝑎 > 0, 𝑏 > 0, 𝑑 > 0, and 𝑏 > 𝑑. The parameter 𝑑
reflects the extent to which the two differentiated products
are substitutes for each other.The cost function has the linear
form:

𝐶
𝑖
= 𝑐
𝑖
𝑄
𝑖
, 𝑖 = 1, 2, (2)

where 𝑐
𝑖
is the marginal cost of 𝑖th firm, so 𝑐

𝑖
is a positive

constant.
At the second stage of the period 𝑡, firm 2 observes 𝑝

1
(𝑛)

then chooses a price 𝑝
2
(𝑛) to maximize its own profits. Thus,

the profit of the follower is given by

Π
2
(𝑛) = (𝑝

2
(𝑛) − 𝑐

2
) 𝑄
2
(𝑛)

= (𝑝
2
(𝑛) − 𝑐

2
) (𝑎 − 𝑏𝑝

2
(𝑛) + 𝑑𝑝

1
(𝑛)) .

(3)

The marginal profit of the firm 2 is

𝜕Π
2
(𝑛)

𝜕𝑝
2
(𝑛)

= 𝑎 + 𝑏𝑐
2
− 2𝑏𝑝

2
(𝑛) + 𝑑𝑝

1
(𝑛) . (4)

Setting 𝜕Π
2
(𝑛)/𝜕𝑝

2
(𝑛) = 0, the profit-maximizing price for

firm 2 is obtained as follow:

𝑝
2
(𝑛) =

𝑎 + 𝑏𝑐
2
+ 𝑑𝑝
1
(𝑛)

2𝑏
. (5)

At the first stage of the period 𝑛, the leader’s profit is given by

Π
1
(𝑛) = (𝑝

1
(𝑛) − 𝑐

1
) 𝑄
1
(𝑛)

= (𝑝
1
(𝑛) − 𝑐

1
) (𝑎 − 𝑏𝑝

1
(𝑛) + 𝑑𝑝

2
(𝑛)) .

(6)

Since firm 1 predicts that firm 2 chooses its optimum price
𝑝
2
(𝑛) in terms of (5), then substituting (5) into (6), we get

Π
1
(𝑛) = (𝑝

1
(𝑛) − 𝑐

1
) (𝑎 − 𝑏𝑝

1
(𝑛) + 𝑑

𝑎 + 𝑏𝑐
2
+ 𝑑𝑝
1
(𝑛)

2𝑏
) .

(7)

So, the marginal profit of the firm 1 is

𝜕Π
1
(𝑛)

𝜕𝑝
1
(𝑛)

= 𝑎 − (2𝑏 −
𝑑
2

𝑏
)𝑝
1
(𝑛)

+
𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
.

(8)

In this work, the two firms (leader and follower) are
boundedly rational players. They have no complete informa-
tion of market, and they determine the price of production
with the information of local profit maximization.

The leader determines its price of production of period
𝑛 + 1 on the basis of expected marginal profit 𝜕Π

1
(𝑛)/𝜕𝑝

1
(𝑛).

The leader will increase (decrease) its price for period 𝑛 + 1
if the marginal profit is positive (negative) at period 𝑛. This
adjustment mechanism has been called myopic by Dixit in
[23]. Thus, this dynamical mechanism can be modeled as

𝑝
1
(𝑛 + 1) = 𝑝

1
(𝑛) + 𝛼

1
𝑝
1
(𝑛)

𝜕Π
1
(𝑛)

𝜕𝑝
1
(𝑛)

, (9)

where 𝛼
1
is a positive parameter and represents the speed

of adjustment of the leader. Substituting (8) into (9), the
dynamical adjustment mechanism of the leader (firm 1) has
the following form:

𝑝
1
(𝑛 + 1) = 𝑝

1
(𝑛) + 𝛼

1
𝑝
1
(𝑛) (𝑎 − (2𝑏 −

𝑑
2

𝑏
)𝑝
1
(𝑛)

+
𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
) .

(10)

The follower is also a boundedly rational player and
changes its price according to its marginal profit 𝜕Π

2
/𝜕𝑝
2
.

But, based on the above definition, the follower has known
the current production price of the leader when it chooses
its production. Hence, it is unreasonable if the follower
determines its production price of period 𝑛 + 1 on the basis
of marginal profit of period 𝑛(𝜕Π

2
(𝑛)/𝜕𝑝

2
(𝑛)). In this work,

we assume the follower decides the 𝑝
2
(𝑛 + 1) according to a

forecasting marginal profit of current period. We define it as
𝜕Π

forecast
2

(𝑛 + 1)/𝜕𝑝
2
(𝑛 + 1). By using (4), we have

𝜕Π
forecast
2

(𝑛 + 1)

𝜕𝑝
2
(𝑛 + 1)

= 𝑎 + 𝑏𝑐
2
− 2𝑏𝑝

2
(𝑛 + 1) + 𝑑𝑝

1
(𝑛 + 1) .

(11)

Then the dynamical equation of the follower can be modeled
as

𝑝
2
(𝑛 + 1) = 𝑝

2
(𝑛) + 𝛼

2
𝑝
2
(𝑛)

𝜕Π
forecast
2

(𝑛 + 1)

𝜕𝑝
2
(𝑛 + 1)

, (12)

where 𝛼
2
is also a positive parameter and represents the

adjustment speed of the follower.
Substituting (11) into (12), we have

𝑝
2
(𝑛 + 1) = 𝑝

2
(𝑛) + 𝛼

2
𝑝
2
(𝑛)

× (𝑎 + 𝑏𝑐
2
− 2𝑏𝑝

2
(𝑛 + 1) + 𝑑𝑝

1
(𝑛 + 1)) .

(13)
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By solving (13), it can be reduced to

𝑝
2
(𝑛 + 1) =

𝑝
2
(𝑛)

1 + 2𝛼
2
𝑏𝑝
2
(𝑛)

(1 + 𝛼
2
(𝑎 + 𝑏𝑐

2
+ 𝑑𝑝
1
(𝑛 + 1))) .

(14)

Thus, the price Stackelberg duopoly game with bound-
edly rational players is described by the following two-
dimensional discrete dynamical system:

𝑝
1
(𝑛 + 1) = 𝑝

1
(𝑛) + 𝛼

1
𝑝
1
(𝑛) (𝑎 − (2𝑏 −

𝑑
2

𝑏
)𝑝
1
(𝑛)

+
𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
) ,

𝑝
2
(𝑛 + 1) =

𝑝
2
(𝑛)

1 + 2𝛼
2
𝑏𝑝
2
(𝑛)

(1 + 𝛼
2
(𝑎 + 𝑏𝑐

2
+ 𝑑𝑝
1
(𝑛 + 1))) .

(15)

One can see that the form of this dynamical system is so
different from the previous classical Cournot and Bertrand
duopoly game with bounded rationality. And the product
price of the leader at period 𝑛 + 1 is only relevant to its own
price of period 𝑛; but the product price of the follower at
period 𝑛 + 1 is determined by its own price of period 𝑛 and
the leader’s price of period 𝑛 + 1. In addition, this model is
unsymmetrical and this is different from the Zhang’s [16] and
Peng’s model, [19], in which their models are symmetrical.
Maybe these will give rise to different result and complicated
dynamics from the boundedly rational Cournot andBertrand
duopoly game.

3. Equilibrium Points and Local Stability

We are interested only in nonnegative trajectories; hence, the
system is not defined in the origin (0, 0). By setting𝑝

𝑖
(𝑛+1) =

𝑝
𝑖
(𝑛) = 𝑝

𝑖
in the dynamical system (15), we get the following

nonlinear algebraic system:

𝛼
1
𝑝
1
(𝑎 − (2𝑏 −

𝑑
2

𝑏
)𝑝
1
+
𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
) = 0,

𝑝
2

1 + 2𝛼
2
𝑏𝑝
2

(1 + 𝛼
2
(𝑎 + 𝑏𝑐

2
+ 𝑑𝑝
1
)) − 𝑝

2
= 0.

(16)

It is easy to work out two fixed points:

𝐸
1
= (

2𝑎𝑏 + 𝑎𝑑 + 2𝑏
2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

4𝑏2 − 2𝑑2
, 0) ,

𝐸
∗
= (𝑝
∗

1
, 𝑝
∗

2
) ,

(17)

where

𝑝
∗

1
=
2𝑎𝑏 + 𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

4𝑏2 − 2𝑑2
,

𝑝
∗

2
=
4𝑎𝑏
2
+ 2𝑎𝑏𝑑 + 2𝑏

2
𝑐
1
𝑑 + 4𝑏

3
𝑐
2
− 𝑎𝑑
2
− 𝑏𝑐
2
𝑑
2
− 𝑐
1
𝑑
3

2𝑏 (4𝑏2 − 2𝑑2)
.

(18)

Obviously, 𝐸
1
is a boundary equilibrium. The fixed point 𝐸∗

is the Nash equilibrium and has economic sense due to 𝑏 > 𝑑.
Easily, we can get the following:

𝑝
∗

1
− 𝑝
∗

2
= (2𝑏

2
𝑑 (𝑐
2
− 𝑐
1
) + 4𝑏

3
(𝑐
1
− 𝑐
2
)

−2𝑏𝑐
1
𝑑
2
+ 𝑎𝑑
2
+ 𝑏𝑐
2
𝑑
2
+ 𝑐
1
𝑑
3
)

× (2𝑏 (4𝑏
2
− 2𝑑
2
))
−1

.

(19)

For comparison, setting 𝑐
1
= 𝑐
2
= 𝑐, then we have

𝑝
∗

1
− 𝑝
∗

2
=
𝑑
2
(𝑎 − 𝑏𝑐 + 𝑐𝑑)

2𝑏 (4𝑏2 − 2𝑑2)
. (20)

The quantity𝑄
1
= 𝑄
2
= 𝑎−𝑏𝑐+𝑐𝑑 > 0when price 𝑝

1
= 𝑝
2
=

𝑐, so 𝑝∗
1
> 𝑝
∗

2
. That is to say, in Nash equilibrium the leader’s

product price is always greater than follower’s product price.
In addition, we remember that in Zhang’s model [16] the

product price of firm 1 in the Nash equilibrium is

𝑝
∗

1
=
2𝑎𝑏 + 𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑

4𝑏2 − 𝑑2
. (21)

Obviously, 𝑝∗
1
of our model is less than 𝑝∗

1
of Zhang’s model.

(This is comparable because there are the same inverse
demand functions and linear cost functions in ourmodel and
Zhang’s model.) This is beneficial for consumers.

In order to investigate the local stability of the equilibrium
points of 𝐸

1
and 𝐸

∗, we return to the two-dimensional
dynamical system. Let 𝐽 be the Jacobian matrix of the system
corresponding to the state variables (𝑞

1,
, 𝑞
2
) then

𝐽 (𝑝
1
, 𝑝
2
) =

[
[

[

𝐴
1

0

𝛼
2
𝑑𝑝
2
𝐴
1

1 + 2𝛼
2
𝑏𝑝
2

1 + 𝛼
2
(𝑎 + 𝑏𝑐

2
+ 𝑑𝐴
2
)

(1 + 2𝛼
2
𝑏𝑝
2
)
2

]
]

]

, (22)

where

𝐴
1
= 1 + 𝛼

1
(𝑎 − 2(2𝑏 −

𝑑
2

𝑏
)𝑝
1

+
𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
) ,

𝐴
2
= 𝑝
1
+ 𝛼
1
𝑝
1
(𝑎 − (2𝑏 −

𝑑
2

𝑏
)𝑝
1

+
𝑎𝑑 + 2𝑏

2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
) .

(23)

The stability of equilibrium points will be determined by the
nature of the eigenvalues of the Jacobian matrix evaluated at
the corresponding equilibrium points.

Theorem 1. The boundary equilibrium point 𝐸
1
of the system

(15) is unstable.
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Proof. The Jacobian matrix at 𝐸
1
takes the form:

𝐽 (𝐸
1
)

= [

[

1 − 𝛼
1

2𝑎𝑏 + 𝑎𝑑 + 2𝑏
2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
0

0 1 + 𝛼
2
(𝑎 + 𝑏𝑐

2
+ 𝑑𝑝
1
)

]

]

.

(24)

Its eigenvalues are

𝜆
1
= 1 − 𝛼

1

2𝑎𝑏 + 𝑎𝑑 + 2𝑏
2
𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑
2

2𝑏
,

𝜆
2
= 1 + 𝛼

2
(𝑎 + 𝑏𝑐

2
+ 𝑑𝑝
1
) .

(25)

Since 𝑎 > 0, 𝑏 > 0, 𝑐
𝑖
> 0 (𝑖 = 1, 2) and 𝑏 > 𝑑, so we

have that |𝜆
1
| < 1 and |𝜆

2
| > 1. Then 𝐸

1
is a saddle point

of discrete dynamical system (15). This completes the proof
of the Theorem 1.

Next, we will investigate the local stability of the Nash
equilibrium point 𝐸∗.

3.1. Local Stability ofNash EquilibriumPoint𝐸∗. TheJacobian
matrix at 𝐸∗ takes the form:

𝐽 (𝐸
∗
)

=

[
[
[
[
[

[

1 − 𝛼
1
(2𝑏 −

𝑑
2

𝑏
)𝑝
∗

1
0

𝛼
2
𝑑𝑝
∗

2
(1 − 𝛼

1
(2𝑏 − 𝑑

2
/𝑏) 𝑝
∗

1
)

1 + 2𝛼
2
𝑏𝑝∗
2

1

1 + 2𝛼
2
𝑏𝑝∗
2

]
]
]
]
]

]

.

(26)

Its eigenvalues are

𝜆
1
= 1 − 𝛼

1
(2𝑏 −

𝑑
2

𝑏
)𝑝
∗

1
,

𝜆
2
=

1

1 + 2𝛼
2
𝑏𝑝∗
2

.

(27)

If the eigenvalues 𝜆
𝑖
, 𝑖 = 1, 2, satisfy inequalities |𝜆

𝑖
| < 1, 𝑖 =

1, 2, then the Nash equilibrium points will be locally stable.
First, |𝜆

𝑖
| < 1 that is

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝛼
1
(2𝑏 −

𝑑
2

𝑏
)𝑝
∗

1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1. (28)

It can be reduced to

0 < 𝛼
1
<

2

(2𝑏 − 𝑑2/𝑏) 𝑝∗
1

. (29)

Substituting 𝑝∗
1
, we have

0 < 𝛼
1
<

4𝑏

2𝑎𝑏 + 𝑎𝑑 + 2𝑏2𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑2
. (30)

Then |𝜆
2
| < 1 equal to |1/(1 + 2𝛼

2
𝑏𝑝
∗

2
)| < 1. This inequality

is always fulfilled due to 𝛼
2
, 𝑏, and 𝑝∗

2
> 0.

So, we can state the following summarizing result.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

p

p1

p2

𝛼1

Figure 1: Bifurcation diagram with respect to 𝛼
1
when 𝛼

2
= 0.5.

Theorem 2. TheNash equilibrium𝐸∗ of the dynamical system
(15) is locally asymptotically stable provided that

0 < 𝛼
1
<

4𝑏

2𝑎𝑏 + 𝑎𝑑 + 2𝑏2𝑐
1
+ 𝑏𝑐
2
𝑑 − 𝑐
1
𝑑2
. (31)

The inequality (31) defines a range in which the Nash equilib-
rium point 𝐸∗ is stable; otherwise the Nash equilibrium point
𝐸
∗ loses its stability through the boundary of this range. And

one can conclude that the stability of the dynamical system
(15) is only relevant to the adjustment speed of the leader
and not relevant to the follower’s adjustment speed. This result
is significant and different from the classical Cournot and
Bertrand duopoly game with bounded rationality. In addition,
one can see, stability region of the Nash equilibrium point is a
decreasing function with respect to the market capacity 𝑎 and
the marginal cost 𝑐

1
.

These inferences will be demonstrated in Section 4.

4. Numerical Simulations

In order to be more clear and intuitive in understanding the
complex dynamic behavior of the discrete dynamical system
(15), numerical analysis is used to describe the dynamical
evolution process. For convenience, we take 𝑎 = 2, 𝑏 = 0.5,
𝑐
1
= 0.2, 𝑐

2
= 0.4,𝑑 = 0.3 to study the local stability properties

of theNash equilibriumpoint. By calculation, we get theNash
equilibrium 𝐸

∗
= (3.3439, 3.2032).

Figure 1 shows the price bifurcation diagramwith respect
to 𝛼
1
(the adjustment speed of boundedly rational leader)

of dynamical system (15) when 𝛼
2
= 0.5. One can see the

Nash equilibrium 𝐸
∗
= (3.3439, 3.2032) is locally stable

when the parameter 𝛼
1
is small. As 𝛼

1
increases, the Nash

equilibrium point becomes unstable; that is, Period-2 and
period-4 bifurcations appear and finally chaotic scenario
occur. Definitely, when 𝛼

1
> 0.7294, flip (period-doubling)

bifurcation occurs and complex dynamic behavior begins to
appear. Obviously, this fluctuation of system is harmful to
both firms. One can conclude that the speed of adjustment
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Figure 3: Time sequence diagrams under different states.

of the boundedly rational leader 𝛼
1
has a destabilizing

effect to the dynamical system (15). The Largest Lyapunov
exponentwhich corresponds to Figure 1 is plotted in Figure 2.
This diagram also shows the relationship between the local
stability of the Nash equilibrium point and the speed of
adjustment of the boundedly rational leader 𝛼

1
. And one can

obtain a better understanding of dynamical behaviors of the
system (15).

Figure 3 shows the price evolution with time when the
dynamical system (15) is in the stable (𝛼

1
= 0.5), period-

doubling bifurcations (𝛼
1
= 0.8), and chaotic state 𝛼

1
= 1.0.

As can be seen from Figure 3(a), along with the continuation
of competitive cycle, the price of two firms will be stable in
equilibrium state gradually after a series of fluctuation. And
the price evolves into 2-period orbit gradually in Figure 3(b).
But in Figure 3(c), the price is in chaos and takes on
unordered change.

We draw the two-dimension flip bifurcation diagram
in the parameters 𝛼

1
and 𝑎 (Figure 4(a)) and 𝛼

1
and 𝑐

1

(Figure 4(b)). In Figure 4, the Nash equilibrium is stable
when the parameters 𝛼

1
, 𝑎, and 𝑐

1
are in the cyan-shaped area

(stability region) and loses its stability with increasing value
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of 𝛼
1
. And the two-flip bifurcation cures are inverse function

cures. This demonstrates what was mentioned above that
stability region of the Nash equilibrium point is a decreasing
function with respect to the market capacity 𝑎 and the
marginal cost 𝑐

1
.

Figure 5 shows the price evolution process with respect
to 𝛼
2
(the speed of adjustment of the boundedly rational

follower) of dynamical system (15)when𝛼
1
= 0.5. In Figure 4,

the price is unalterable all the while and the dynamical system
(15) is always locally stable. And this also demonstrates that
the speed of adjustment of the boundedly rational follower
has no effect on the game model.

Strange attractor is one of the main features of chaotic
motion. It exhibits fractal structure. Figure 6 shows the
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Figure 6: Strange attractor when 𝛼
1
= 1.01 and 𝛼

2
= 0.5.

strange attractor in the phase plane (𝑞
1
, 𝑞
2
) for the parameter

values 𝑎 = 2, 𝑏 = 0.5, 𝑐
1
= 0.2, 𝑐

2
= 0.4, 𝛼

1
= 1.07, and

𝛼
2
= 0.5.
Sensitive dependence on initial conditions is another

main characteristic of chaotic system. In order to demon-
strate sensitive dependence on initial conditions of system
(10), we simulate two orbits in Figure 7 for the parameter
values 𝑎 = 2, 𝑏 = 0.5, 𝑐

1
= 0.2, 𝑐

2
= 0.4, 𝛼

1
= 1.01,

and 𝛼
2
= 0.5. The red and blue curves start from the

initial points (𝑝
1
(0), 𝑝
2
(0)) = (2.5, 2.3) and (𝑝

1
(0), 𝑝
2
(0)) =

(2.5001, 2.3), respectively. It shows that, at the beginning, they
are indistinguishable, but after a number of iterations, the
difference between them builds up rapidly.
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the two orbits of 𝑝

1
-coordinates for (𝑎, 𝑏, 𝑐

1
, 𝑐
2
, 𝑑, 𝛼
1
, 𝛼
2
) =

(2, 0.5, 0.2, 0.4, 0.3, 1.01, 0.5) with (𝑝
1
(0), 𝑝

2
(0)) = (2.5, 2.3) for the

red curve and (𝑝
1
(0), 𝑝

2
(0)) = (2.5001, 2.3) for the blue curve.

5. Conclusion

In this paper we have proposed a price Stackelberg duopoly
game model with boundedly rational players. The complex
dynamical behaviors have been studied. In Nash equilibrium,
the price of the leader is less than the follower’s and also
less than equilibrium price of Bertrand game under the same
assumption.The theoretical and numerical analysis shows the
result that the stability of the dynamical system (15) is only
relevant to the speed of price adjustment of the boundedly
rational leader and not relevant to the follower’s. Definitely,
the speed of price adjustment of the boundedly rational
leader has a destabilizing effect and the follower’s has no
effect on the dynamical system. This is different from the
classical Cournot and Bertrand duopoly game with bounded
rationality. Perhaps the reason of this is the Stackelberg-type
game structure. The other type of price Stackelberg game,
such as with heterogeneous player or different competition
strategies, will be studied in future work.
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[14] J. Bertrand, “Théorie mathématique de la richesse sociale,”
Journal des Savants, pp. 499–508, 1883.

[15] H. Gravelle and R. Rees, Microeconomics, Longman, Harlow,
UK, 2nd edition, 1992.

[16] J. X. Zhang, Q. L. Da, and Y. H. Wang, “The dynamics of
Bertrand model with bounded rationality,” Chaos, Solitons and
Fractals, vol. 39, no. 5, pp. 2048–2055, 2009.

[17] B. G. Xin and T. Chen, “On a master-slave Bertrand game
model,” Economic Modelling, vol. 28, no. 4, pp. 1864–1870, 2011.

[18] F. Chen, J. H. Ma, and X. Q. Chen, “The study of dynamic
process of the triopoly games in chinese 3G telecommunication
market,” Chaos, Solitons and Fractals, vol. 42, no. 3, pp. 1542–
1551, 2009.

[19] J. Peng, Z. Miao, and F. Peng, “Study on a 3-dimensional game
model with delayed bounded rationality,” Applied Mathematics
and Computation, vol. 218, no. 5, pp. 1568–1576, 2011.

[20] H. Stackelberg,Marketform und Gleichgewicht, Julius Springer,
Vienna, Austria, 1934.



8 Discrete Dynamics in Nature and Society

[21] R. Gibbons, Game Theory for Applied Economists, Princeton
University Press, Princeton, NJ, USA, 1992.

[22] X. Vives, Oligopoly Pricing: Old Ideas and New Tool, MIT Press,
Cambridge, Mass, USA, 1999.

[23] A. Dixit, “Comparative statics for oligopoly,” International
Economic Review, vol. 27, no. 1, pp. 107–122, 1986.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


