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The classical Stackelberg game is extended to boundedly rational price Stackelberg game, and the dynamic duopoly game model is
described in detail. By using the theory of bifurcation of dynamical systems, the existence and stability of the equilibrium points
of this model are studied. And some comparisons with Bertrand game with bounded rationality are also performed. Stable region,
bifurcation diagram, The Largest Lyapunov exponent, strange attractor, and sensitive dependence on initial conditions are used to
show complex dynamic behavior. The results of theoretical and numerical analysis show that the stability of the price Stackelberg
duopoly game with boundedly rational players is only relevant to the speed of price adjustment of the leader and not relevant to
the follower’s. This is different from the classical Cournot and Bertrand duopoly game with bounded rationality. And the speed of

price adjustment of the boundedly rational leader has a destabilizing effect on this model.

1. Introduction

In the oligopolistic market, oligopoly firms compete in
quantity or price. We all know that Cournot model [1] is one
of the most famous quantity game models, in which all firms
(players) are provided with naive expectations. Presently,
boundedly rational quantity oligopoly game has been studied
widely, and a player can choose his expectation rule from
three different expectations: naive, bounded rational, and
adaptive [2, 3]. Many duopoly quantity games with homo-
geneous or heterogeneous players have been studied under
linear or nonlinear demand function and linear or nonlinear
cost functions [2-7]. Similarly, some researchers have studied
all sorts of triopoly quantity game models [8-13]. These
studies find that there are some complex dynamic behaviors
such as bifurcation and chaos in the oligopoly quantity game
model.

Compared with quantity competition, maybe price com-
petition is more general in a real market. One of the most
classical price game models is the Bertrand model [14]. In
Bertrand model, each firm will try to reduce its product
price, until its products are selling at no profit. This result

is called Bertrand paradox. However, the Bertrand paradox
rarely appears in practice. One of the reasons is that com-
pletely homogeneous product is almost nonexistent. So, one
way of avoiding the paradox is to allow the firms to sell
differentiated products [15]. Similar to quantity competition,
boundedly rational duopoly and triopoly price game models
with differentiated products have been studied in [16-19].

In the above mentioned quantity and price game models,
the one-short games are static; that is, each of the players in
the game determines their quantity or price at the same time.
However, dynamic game or sequential game is very common
in the real market. We all know that the most classical
sequential game is Stackelberg game [20, 21] in which one
firm, the leader, commits to a strategy first and publicly, and
then the remaining firms, the followers, observe the leader’s
choice and make their decisions. The original Stackelberg
game model is a quantity game with homogeneous product.
Later, it was extended to the differentiated products for both
quantity and price game. Vives [22] summarized the literature
about the Stackelberg game model and pointed out that the
relevant literature took the quantity for decision variable
mostly. Until now there is little literature on price Stackelberg



game. Consequently, there is no result for boundedly rational
price Stackelberg in a differentiated products market. And its
dynamic has not been studied. This paper aims to fill this gap.

This paper is organized as follows. In Section 2, the price
Stackelberg duopoly game model with boundedly rational
players is briefly described. The local stability condition of
the equilibrium point is discussed in Section 3. In Section 4,
numerical simulations are used to demonstrate the complex
dynamics of our model. Finally, the conclusion of this paper
is provided in Section 5.

2. The Model

We consider an oligopoly market served by two firms produc-
ing differentiated products. The two firms compete in price.
Firm 1, as the leader, chooses a price p, first, and firm 2, as the
follower, observes p, then chooses a price p,. Let p;(n) denote
the price of ith firm, i = 1,2 during periodn = 0,1, 2,.... The
quantity each firm sells Q;, a linear inverse demand function,
is determined by the following equations [15, 21]:

Q, =a-bp, +dp,,
¢))
Q, =a-bp, +dp,,

wherea > 0,b > 0,d > 0,and b > d. The parameter d
reflects the extent to which the two differentiated products
are substitutes for each other. The cost function has the linear
form:

Ci =6Q;

where ¢; is the marginal cost of ith firm, so ¢ is a positive
constant.

At the second stage of the period ¢, firm 2 observes p, ()
then chooses a price p,(n) to maximize its own profits. Thus,
the profit of the follower is given by

IT, () = (p, () — ¢,) Q, (m)

i=1,2, 2)

(3)
= (py (1) =) (a=bp, () +dp, (n)).
The marginal profit of the firm 2 is
oIl
) b 2y () +dp (). @)
2

Setting 0I1,(n)/dp,(n) = 0, the profit-maximizing price for
firm 2 is obtained as follow:

a+be, +dp, (n)
2b '
At the first stage of the period #, the leader’s profit is given by

I, (n) = (p; (n) — ¢;) Q; (n)
=(p1 () — ) (a—bp, (n) +dp, (n)).

Since firm 1 predicts that firm 2 chooses its optimum price
p,(n) in terms of (5), then substituting (5) into (6), we get

a+bcz+dp1(n)>

py(n) = €)

(6)

I1, (n)=(p1(n)—c1)<a—bp1 n)+d >

7)
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So, the marginal profit of the firm 1 is

oI, (n) a
apl (7’1) _a_<2b_ ?)pl (7’1)

. ad + 2b%¢; + be,d — ¢, d”
2b '

In this work, the two firms (leader and follower) are
boundedly rational players. They have no complete informa-
tion of market, and they determine the price of production
with the information of local profit maximization.

The leader determines its price of production of period
n+ 1 on the basis of expected marginal profit 0IT, (n)/9p, (n).
The leader will increase (decrease) its price for period n + 1
if the marginal profit is positive (negative) at period n. This
adjustment mechanism has been called myopic by Dixit in
[23]. Thus, this dynamical mechanism can be modeled as

oI, (n)
1= -
pi(n+1) =p; (n)+ap (n) ) 9)
where «; is a positive parameter and represents the speed
of adjustment of the leader. Substituting (8) into (9), the
dynamical adjustment mechanism of the leader (firm 1) has
the following form:

(8)

2
pr(n+1)=py(n) +ap; (n) ("1_ (Zb_%)pl (n)

Lad+ 2b%¢, + be,d — ¢, d*
2b '

(10)

The follower is also a boundedly rational player and
changes its price according to its marginal profit dI1,/dp,.
But, based on the above definition, the follower has known
the current production price of the leader when it chooses
its production. Hence, it is unreasonable if the follower
determines its production price of period n + 1 on the basis
of marginal profit of period n(dlIl,(n)/dp,(n)). In this work,
we assume the follower decides the p,(n + 1) according to a
forecasting marginal profit of current period. We define it as

al—lgorecast(n +1)/0p,(n + 1). By using (4), we have

al—lforecast (1’[ + 1)
W =a+bc,—2bp,(n+1)+dp, (n+1).

(11)

Then the dynamical equation of the follower can be modeled
as

angorecast (n + 1)
op, (n+1)

where «, is also a positive parameter and represents the
adjustment speed of the follower.
Substituting (11) into (12), we have

Py (n+1) = p,(n) +o,p, (n) (12)

>

py(n+1)=p, (n)+a,p, (n) )
x (a+bc,—2bp, (n+ 1) +dp, (n+1)).
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By solving (13), it can be reduced to

Py (n)

W(l+(x2(a+bcz+dpl(n+l))).

(14)

py(n+1)=

Thus, the price Stackelberg duopoly game with bound-
edly rational players is described by the following two-
dimensional discrete dynamical system:

2
pr(n+1)=p (n)+ap (n)(a— <2b_ %)pl ()

Lad+ 2b%¢, + be,d — ¢, d*
2b ’

Py (n)

W(l+(x2(a+bcz+dpl(n+l))).

(15)

py(n+1)=

One can see that the form of this dynamical system is so
different from the previous classical Cournot and Bertrand
duopoly game with bounded rationality. And the product
price of the leader at period #n + 1 is only relevant to its own
price of period n; but the product price of the follower at
period n + 1 is determined by its own price of period n and
the leader’s price of period n + 1. In addition, this model is
unsymmetrical and this is different from the Zhang’s [16] and
Peng’s model, [19], in which their models are symmetrical.
Maybe these will give rise to different result and complicated
dynamics from the boundedly rational Cournot and Bertrand
duopoly game.

3. Equilibrium Points and Local Stability

We are interested only in nonnegative trajectories; hence, the
system is not defined in the origin (0, 0). By setting p;(n+1) =
p;(n) = p; in the dynamical system (15), we get the following
nonlinear algebraic system:

2 2 )
o p, (a_(zb_%)pl+ad+2b clzbqu ad ):0,

%(;bh(l+(x2(a+bcz+dpl))—pz =0.
(16)
It is easy to work out two fixed points:
E - 2ab + ad + 2b%¢, + be,d — ¢;d” 0
e 4b? - 2d? ) 17)
E" = (pipy)
where
. 2ab+ad +2b%*c, + be,d - ¢, d*
b= 4b? —2d? ’
. A4ab® +2abd + 2b°cd + 4b°c, — ad” - bo,d” — ¢ d’
P2 = 2b (4% - 2d%) '

(18)

Obviously, E, is a boundary equilibrium. The fixed point E*
is the Nash equilibrium and has economic sense due to b > d.
Easily, we can get the following:

pr-ps=(d(g-a)+ 4’ (4 - o)
—2bc,d” + ad® + be,d® + c1d3) (19)
x (2b (ab® - 24%)) .
For comparison, setting ¢; = ¢, = ¢, then we have

. .« d*(a-bc+cd)
b= (4b* - 2d2) (20)
The quantity Q; = Q, = a—bc+cd > 0 when price p; = p, =
¢, s0 py > p,. That is to say, in Nash equilibrium the leader’s
product price is always greater than follower’s product price.

In addition, we remember that in Zhang’s model [16] the
product price of firm 1in the Nash equilibrium is

« _2ab+ad+ 2b%¢; + be,d

P 4 — & -

Obviously, p; of our model is less than p; of Zhang’s model.
(This is comparable because there are the same inverse
demand functions and linear cost functions in our model and
Zhang’s model.) This is beneficial for consumers.

In order to investigate the local stability of the equilibrium
points of E; and E*, we return to the two-dimensional
dynamical system. Let J be the Jacobian matrix of the system
corresponding to the state variables (g, ,g,) then

A, 0
T(pypy) = | %dpAr 1+a(a+bg+dAy) || (22)
1+ 20,bp, (1 +20,bp,)°

where

d2
A1=1+oc1(a—2<2b—?>p1

. ad + 2b%*c, + be,d — ¢,d* )

2b
(23)

d2
Ay=prtap (a— <2b— ?)Pl

+ad +2b%¢, + be,d — ¢, d* )

2b

The stability of equilibrium points will be determined by the
nature of the eigenvalues of the Jacobian matrix evaluated at
the corresponding equilibrium points.

Theorem 1. The boundary equilibrium point E, of the system
(15) is unstable.



Proof. The Jacobian matrix at E, takes the form:

J(E,)

2ab + ad + 2b%¢; + be,d — ¢,d*
1-o b 0 )

0 1+a,(a+be +dp;)
(24)

Its eigenvalues are
2ab + ad + 2b*¢, + be,d — ¢, d”

2b T (25)
Ay =1+a,(a+bc +dp,).

A =1-o

Sincea > 0,b > 0,¢ > 0(i = 1,2)and b > d, so we
have that |A;] < 1 and |A,| > 1. Then E; is a saddle point
of discrete dynamical system (15). This completes the proof
of the Theorem 1. O

Next, we will investigate the local stability of the Nash
equilibrium point E*.

3.1 Local Stability of Nash Equilibrium Point E*. The Jacobian
matrix at E* takes the form:

J(E7)
ay .
a(n )
aydps (1-a, (20 -d*/b) p;) 1
1+ 2a,bp; 1+ 2a,bp;
(26)
Its eigenvalues are
2
A =1-a (219—%)1){‘,
(27)
B 1
27 1+ 2a,bpr’

If the eigenvalues A;, i = 1,2, satisfy inequalities |A;| < 1, i =
1,2, then the Nash equilibrium points will be locally stable.
First, [A;| < 1 thatis

dZ
‘1—041 (Zb—?)pf < 1. (28)
It can be reduced to
2
0<a < (29)

(2b - d*/b) p;
Substituting p;, we have

4b

0 .
<N S 2ab+ad + 2%, + bod — o d?

(30)

Then |A,| < 1 equal to [1/(1 + 2a,bp;)| < 1. This inequality
is always fulfilled due to a,, b, and p; > 0.
So, we can state the following summarizing result.
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FIGURE 1: Bifurcation diagram with respect to «; when a, = 0.5.

Theorem 2. The Nash equilibrium E* of the dynamical system
(15) is locally asymptotically stable provided that

4b
< 2ab + ad + 2%, + boyd — o d’

0<oy (31)

The inequality (31) defines a range in which the Nash equilib-
rium point E* is stable; otherwise the Nash equilibrium point
E™ loses its stability through the boundary of this range. And
one can conclude that the stability of the dynamical system
(15) is only relevant to the adjustment speed of the leader
and not relevant to the follower’s adjustment speed. This result
is significant and different from the classical Cournot and
Bertrand duopoly game with bounded rationality. In addition,
one can see, stability region of the Nash equilibrium point is a
decreasing function with respect to the market capacity a and
the marginal cost c;.

These inferences will be demonstrated in Section 4.

4. Numerical Simulations

In order to be more clear and intuitive in understanding the
complex dynamic behavior of the discrete dynamical system
(15), numerical analysis is used to describe the dynamical
evolution process. For convenience, we take a = 2, b = 0.5,
¢ =0.2,¢, =0.4,d = 0.3 to study the local stability properties
of the Nash equilibrium point. By calculation, we get the Nash
equilibrium E* = (3.3439, 3.2032).

Figure 1 shows the price bifurcation diagram with respect
to «; (the adjustment speed of boundedly rational leader)
of dynamical system (15) when a, = 0.5. One can see the
Nash equilibrium E* = (3.3439,3.2032) is locally stable
when the parameter «; is small. As «; increases, the Nash
equilibrium point becomes unstable; that is, Period-2 and
period-4 bifurcations appear and finally chaotic scenario
occur. Definitely, when «; > 0.7294, flip (period-doubling)
bifurcation occurs and complex dynamic behavior begins to
appear. Obviously, this fluctuation of system is harmful to
both firms. One can conclude that the speed of adjustment
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FIGURE 3: Time sequence diagrams under different states.

of the boundedly rational leader «; has a destabilizing
effect to the dynamical system (15). The Largest Lyapunov
exponent which corresponds to Figure 1is plotted in Figure 2.
This diagram also shows the relationship between the local
stability of the Nash equilibrium point and the speed of
adjustment of the boundedly rational leader «,. And one can
obtain a better understanding of dynamical behaviors of the
system (15).

Figure 3 shows the price evolution with time when the
dynamical system (15) is in the stable (« 0.5), period-
doubling bifurcations («; = 0.8), and chaotic state ot; = 1.0.

As can be seen from Figure 3(a), along with the continuation
of competitive cycle, the price of two firms will be stable in
equilibrium state gradually after a series of fluctuation. And
the price evolves into 2-period orbit gradually in Figure 3(b).
But in Figure 3(c), the price is in chaos and takes on
unordered change.

We draw the two-dimension flip bifurcation diagram
in the parameters «; and a (Figure 4(a)) and «; and ¢
(Figure 4(b)). In Figure 4, the Nash equilibrium is stable
when the parameters «,, a, and ¢, are in the cyan-shaped area
(stability region) and loses its stability with increasing value



a

Discrete Dynamics in Nature and Society

1.8

Flip
bifurcation

1.6 curve

1.4

1.2

0.8
0.6
0.4

0.2

0 0.5 1
31

()

FiGure 4: Flip bifurcation curves in the parameters «; and a (a) and «; and ¢, (b).

6
3
2.5 Flip bifurcation curve
2
a
1.5
1
0.5
0 1 2 3
491
(a)
4.5 |
4 -
P
351 N
3 T
2!
2.5 F
P
2 L
1.5}
1 L
0.5 F
0 .
0 2 4 6 8 10

5]

FIGURE 5: Evolution diagram with respect to «, when «; = 0.5.

of a;. And the two-flip bifurcation cures are inverse function
cures. This demonstrates what was mentioned above that
stability region of the Nash equilibrium point is a decreasing
function with respect to the market capacity a and the
marginal cost ¢;.

Figure 5 shows the price evolution process with respect
to «, (the speed of adjustment of the boundedly rational
follower) of dynamical system (15) when «¢; = 0.5.In Figure 4,
the price is unalterable all the while and the dynamical system
(15) is always locally stable. And this also demonstrates that
the speed of adjustment of the boundedly rational follower
has no effect on the game model.

Strange attractor is one of the main features of chaotic
motion. It exhibits fractal structure. Figure 6 shows the

3.5

34 r 1

33 ¢

3.1r

P

29+

2.7 .
0.5 1

2.5 3
P

1.5 2
FIGURE 6: Strange attractor when &, = 1.01 and t, = 0.5.

strange attractor in the phase plane (q,, g,) for the parameter
valuesa = 2,b = 05, ¢ = 02,¢ = 04, ¢y = 1.07, and
a, =0.5.

Sensitive dependence on initial conditions is another
main characteristic of chaotic system. In order to demon-
strate sensitive dependence on initial conditions of system
(10), we simulate two orbits in Figure 7 for the parameter
valuesa = 2,b = 05 ¢ = 02,¢, = 04, ¢y = 1.01,
and a, = 0.5. The red and blue curves start from the
initial points (p;(0), p,(0)) = (2.5,2.3) and (p,(0), p,(0)) =
(2.5001, 2.3), respectively. It shows that, at the beginning, they
are indistinguishable, but after a number of iterations, the
difference between them builds up rapidly.
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FIGURE 7: Shows sensitive dependence on initial conditions;
the two orbits of p,-coordinates for (a,b,¢c,c,d,a;,a,) =
(2,0.5,0.2,0.4,0.3,1.01,0.5) with (p,(0), p,(0)) = (2.5,2.3) for the
red curve and (p,(0), p,(0)) = (2.5001, 2.3) for the blue curve.

5. Conclusion

In this paper we have proposed a price Stackelberg duopoly
game model with boundedly rational players. The complex
dynamical behaviors have been studied. In Nash equilibrium,
the price of the leader is less than the follower’s and also
less than equilibrium price of Bertrand game under the same
assumption. The theoretical and numerical analysis shows the
result that the stability of the dynamical system (15) is only
relevant to the speed of price adjustment of the boundedly
rational leader and not relevant to the follower’s. Definitely,
the speed of price adjustment of the boundedly rational
leader has a destabilizing effect and the follower’s has no
effect on the dynamical system. This is different from the
classical Cournot and Bertrand duopoly game with bounded
rationality. Perhaps the reason of this is the Stackelberg-type
game structure. The other type of price Stackelberg game,
such as with heterogeneous player or different competition
strategies, will be studied in future work.
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