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This paper addresses the challenge to design an effective method for managers to efficiently process haz-
ardous states via recorded historical data by developing a stochastic state sequence model to predict dis-
crete safety states – represent the hazardous level of a project or individual person over a period of time
through a Real-Time Location System (RTLS) on construction sites. This involves a mathematical model
for state prediction that is suitable for the big-data environment of modern complex construction pro-
jects. Firstly, an algorithm is constructed for extracting incidents from pre-analysis of the walk-paths
of site workers based on RTLS. The algorithm builds three categories of hazardous region distribution –
certain static, uncertain static and uncertain dynamic – and employs a frequency and duration filter to
remove noise and misreads. Key regions are identified as either ‘hazardous’, ‘risky’, ‘admonitory’ or ‘safe’
depending on the extent of the hazard zone from the object’s boundary, and state recognition is estab-
lished by measuring incidents occurring per day and classifies personal and project states into ‘normal’,
‘incident’, ‘near-miss’ and ‘accident’. A Discrete-Time Markov Chain (DTMC) mathematical model, focus-
ing on the interrelationship between states, is developed to predict states on construction sites. Finally, a
case study is provided to demonstrate how the system can assist in monitoring discrete states and which
indicates it is feasible for the construction industry.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Modern construction industry systems, especially in large and
specific projects are highly complex with numerous interrelated
processes, workers and hazardous worksites. Real-time monitoring
of workers’ behavior is necessary for responding to (and prevent-
ing) project disruption, accidents and injuries in a timely manner.
However, although process innovation and advances in technology
have been demonstrated to improve safety management and labor
productivity on construction projects (Akinci et al., 2006; Gordon
and Akinci, 2005; Jaselskis and El-Misalami, 2003), such timely
prediction or advanced warning of accidents remains problematic
(Wang and Razavi, 2015; Wu et al., 2010a). It is such a nuisance
raising 59% false or negative alarms during a 7-day test (Ruff,
2006) that operators are prone to lose confidence and ignore the
alarms hereafter (Bliss et al., 1995).

The development and extensive use of Radio Frequency Identi-
fication (RFID), Ultra Wideband (UWB) and Bluetooth Low Energy
(BLE) has improved location tracking for allocating labor, materials
and equipment resources more effectively and safely (Teizer et al.,
2008) and the maturity of Real-Time Location Systems (RTLS) tech-
nology has resulted in cost reductions and improved data accuracy
and integrity. RTLS and Physiological Status Monitoring (PSM) have
also been used as an effective tool to remotely monitor the health
(Altini et al., 2014; Wang et al., 2015) and safety of the construc-
tion workforce (Bates and Schneider, 2008; Cheng et al., 2013). This
integrates data from the construction workers’ location and phys-
iological status to automatically identify unsafe work behaviors as
accident precursors. However, despite technological improve-
ments in RTLS, construction projects still suffer from unexpected
disruptions and delays due to worker injuries. Only major acci-
dents are currently reported amongst the big data stored and do
not include the large number of near-misses and minor injuries
which constitute the major portion of unreported safety issues
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(Dee et al., 2013; Taylor et al., 2014; Wu et al., 2010b; Yang et al.,
2014).

A near-miss is an incident which has the capacity to cause an
accident or injury, but fortunately did not happen (Marsh and
Kendrick, 2000). If regular near-miss incidents are left unad-
dressed, they can escalate into serious safety accidents on con-
struction sites. Thus, the identification of near-misses can
provide insights into the potential risk of future accidents. More-
over, near-misses and minor injuries on construction sites occur
at a much higher rate than more severe accidents (Heinrich
et al., 1950; Wu et al., 2010b). As Fig. 1 reveals frequency of acci-
dents is inversely and non-linear proportional to severity. The hor-
izontal axis representing accident severity ranges from 0 (no
injuries) to max (fatalities) based on hazard identification index
(Carter and Smith, 2006). The band condition around vertical axis
of frequency represents near-misses, which have potential to cause
serious consequence but fortunately no injuries (severity is almost
0) arises. However, as the circumstances surrounding incident cat-
egories are similar, near-misses and minor injuries appear to be of
limited use in predicting more serious injuries (Marsh and
Kendrick, 2000).

An alternative approach to distinguishing states on construction
sites is to utilize the interrelationships between normal incidents,
near-misses and accidents instead of their causation. Since 48% of
damages are caused by collisions (Pratt et al., 2001) between labor,
materials and plants, this approach extracts information from
workers’ traveling (Teizer et al., 2008). Much of the travel of con-
struction workers is concentrated on moving around the site from
one activity to another on walk-paths. From a safety management
perspective, therefore, successfully monitoring the walk-path
movements of workers provides a significant contribution, espe-
cially when technological aids such as RTLS are available.

One of the key challenges in applying RTLS for this purpose is in
constructing a reconfigurable rule base to transform the walk-path
into incidents then to states. Simple incidents known as the direct
observations are built on binary operated rules, including stepping
into/out of specific regions, etc., while complex incidents such as
issuing a warning or drawing a response are built on simple or
other complex ones by a logical operator (Hu et al., 2014), with rule
based project progress being integrated with probabilistic reason-
ing to estimate the probability of project/worker states. However,
the relationship between the walk-path and incidents has not yet
been taken into consideration in real time, and it is difficult to
Fig. 1. Accident frequency–severity relation trend line.
modify or make a decision when the scale and frequency of data
increases. Only by classifying a database containing massive data
into separate stored spaces, can the information needed be effec-
tively managed and correlated.

This study aims to process the hazardous states on construction
sites through mathematical models based on RTLS records to
address the research gap that few researchers have developed pre-
diction models by stochastic analysis based on historical location
datasets (Zhou et al., 2013). For this, a monitoring method is devel-
oped based on RTLS and capable of predicting project and onsite
worker states to provide managers with a more practical and con-
venient method of implementing RTLS by using a matrix-based
stochastic time-series mathematical model suitable for modern
complex construction safety management. To achieve this goal,
necessary objectives are established:

� Define and classify the hazardous regions and states based on
RTLS.

� Formulate the state transition as a stochastic process.
� Simulate and process the hazardous states.

Helmets integrated with sensors designed to capture the loca-
tion are used to gather the initial data from which walk-path
sources are derived. The helmet safety system allows managers
to easily control and inspect the system during construction work.
BLE is the chosen communication network technology, which can
operate for a year without battery replacement and has an accurate
communication rate (Omre and Keeping, 2010). The collected data
are directly recognized as incidents, which are turned into states in
the following steps according to the identified algorithms. Accord-
ingly, a new and feasible approach to process hazardous states on
construction sites is proposed, offering a useful reference for future
safety management. The scope and applicability of monitoring pro-
cess from a stochastic perspective clearly indicates that accidents
could be addressed with the development of a variety of tech-
niques and algorithms, which assists the managers in proactively
preventing accidents. The paper presents details of the methodol-
ogy, case study and results of testing the use of the Discrete Time
Markov Chain (DTMC) algorithm in predicting state sequences. A
sequential architecture of system monitoring is designed to con-
struct different levels of incidents. A state recognition and transi-
tion equation and a DTMC-based model is then developed for
prediction and applied in a case study. Finally, a discussion of the
feasibility of using RTLS and DTMC in this application is provided
to allow conclusions to be drawn.
2. Accident causation models, near-misses and the Hidden
Markov Model

The most frequent causes of accidental death and injuries on
construction sites are from falls, falling objects and collapses, elec-
trical accidents and the operation of mobile plant (Wu et al.,
2010b), and existing studies focus on identifying, analyzing and
modeling the causes of safety hazards and risks from an integral
accident perspective (Chi et al., 2005; Hinze et al., 1998). Accident
causation models can be divided into three categories: (1) models
of the accident process, (2) models of human error and unsafe
behavior, and (3) models of human injury mechanics (Lehto and
Salvendy, 1991). These models fundamentally differ from each
other, leading to significantly different inputs, outputs and areas
of application. The inputs include narratives, definitions and spec-
ifications. The outputs cover hazards, errors, probabilities, causes
or solutions. Almost all models explicitly consider the role of
human, product, task and accident processes, without a quantita-
tive mathematical or logical structure. Models can be applied
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quantitatively to predict hazards only when parameters are clearly
specified and are limited to specific problems. To model a wide
variety of behaviors, a Manual Control System can be applied to
assess the deviation between actual and desired states (Rouse,
1980). If the time-lag for an effective response is too long, however,
the safety system model will fail to prevent accidents within
acceptable bounds.

According to the ubiquitous accident pyramid (Heinrich et al.,
1950), fatal accidents occur as a result of sequences that begin
from the large number of near-misses and minor-injury accidents
(Lu and Li, 2009); represented the left section under curve as pre-
sented in Fig. 1. This theory recognizes that injuries could be pre-
vented by removing factors from the sequence. If numeric
estimates are attached to the consequence of incidents, the critical-
ity of the sequences can be statically evaluated. Early safety behav-
ioral research by Flanagan (1959) focuses on the analysis of near-
misses to identify potential causes of accidents. The approach iden-
tifies forms of behaviors, which both contribute to near-misses and
prevent the accident occurring, as well as emphasizing the need to
effectively organize and analyze behavioral information in a timely
and meaningful way.

In response, researchers in manufacturing industries have
developed real-time discrete-event-based monitoring systems for
radio-frequency identification-enabled shop-floor monitoring
using a Hidden Markov Model. The use of rigorous mathematical
models has been applied within this context to effectively predict
belief states and detect disturbances (Hu et al., 2014). This suits the
big-data environments of modern complex manufacturing systems
and can help engineers or managers’ monitor incidents and pro-
cesses more effectively than traditional methods.
3. Location tracking techniques

Recently, a wide range of techniques has been considered in an
attempt to effectively track and monitor construction materials
and personnel. As a new technology, RFID tags have been used to
monitor materials, allowing scanners to read the location at pre-
identified gates or even from discrete formulations (Simic and
Sastry, 2002; Song et al., 2006). Although RFID scanning is an effec-
tive way of tracking materials, this technique on its own has been
ineffective in tracking worker location in real-time (Teizer et al.,
2013). In response to this problem, a proactive construction man-
agement system (PCMS) was recently developed using chirp-
spread-spectrum-based real-time location technology to provide
feedback and post-event analysis (Li et al., 2015). Similarly, other
research has developed a GPS-based antenna and bidirectional
communication system of personnel to alert workers of their prox-
imity to hazardous equipment (Abderrahim et al., 2005). However,
these systems have limited tracking accuracy and have demon-
strated a better outdoor than indoor performance, constraining
their use in complex construction site layouts. UWB is another
technique that is used in innovative and pro-active systems for
automated collision detection avoidance, warning and alerts, with
demonstrated higher positioning accuracy in large open space
environments (Cheng et al., 2011). Research has also focused on
computing algorithm development for tracking dynamic locations
in real time with video cameras (Teizer and Vela, 2009).

An alternative adopted here is the use of 2.4 GHz BLE. This has
several advantages in terms of customized optimization and
potential improved positioning accuracy in comparison to existing
techniques such as Wi-Fi, ZigBee and Classic Bluetooth. Addition-
ally low-power operated, low-weight tags that can be hidden
inside site helmets without obstruction and, most significantly,
should be suitable for wearable devices (Gomez et al., 2012;
Omre and Keeping, 2010).
4. Procedure for recognizing states

A dynamic systems model of state transition is used for moni-
toring discrete incidents. This systems model is based on a Markov
Chain, wherein all states are not directly observable. In comparison
to the use of a Bayesian network for classifying injury narratives
(Lehto et al., 2009; Taylor et al., 2014), DTMC is a simpler modeling
method and has been demonstrated to be more effective in real-
time (Ross, 2014). The rigorous mathematical analysis of system
state monitoring allows the study and prediction of state
sequences on construction sites.

The architecture of the DTMC monitoring system, the flow of
walk-path data and the database associated with multiple-level
incidents is illustrated in Fig. 2. An incident processing module
comprising duration filters and frequency filters is used in the
monitoring system to extract useful information and construct
complex incidents. In the module, a walk-path filter is firstly
applied to smooth the path data from the initial land boundary
and path coordinate information, removing noise, random varia-
tions and other inaccuracies. This is followed by two other filters
and an algorithm that constructs complex incidents from incidents
historically stored in the project database. The complete real-time
information is stored in the incident database and is sourced by the
monitoring module to construct the state sequences. At the end of
the architecture, the DTMC module abstracts historical data from
the incident database and calculates the corresponding parameters
for the construction of a discrete time series. The methodologies
used for predicting state sequences are based on rigorous stochas-
tic formulations and follow the steps shown in Fig. 2.
4.1. Data collection and initial path filter

Walk-path data and sensor signals of helmet wear are collected
from construction projects in real-time. Here walk-data (known as
location data) is measured by a central reader detecting the worker
with a peripheral tag within its range. The delivery message
includes the position r(x,y), timestamp t and a unique tag identifi-
cation e as personal information. Here x and y denote the distances
from agent to the artificial origin horizontally and vertically. Mean-
while the sensor signals are recorded by hidden sensors placed
inside helmets thus, if the worker is not wearing a helmet on sites,
a high level signal is sent to controller for processing by BLE and
vice versa. Basically, the controller can obtain information at any
time through mobile termination with the operating systems. After
processing, simple incidents are identified and tracked with a Boo-
lean variable, i.e. 0 and 1.

Sensors are hidden inside the helmets where head movement is
regular, which can affect information transmission, especially with
high-rise construction work. In response to RTLS data noise, with
occasional outliers due to head movement, the BLE signals need
to be filtered with a computation algorithm called a Robust Kalman
filter (Greg and Gary, 1995; Kalman, 1960). To smooth the signals,
the filter rejects outliers that would lead to errors on the walk-path
curves. Through the rapid computation algorithm, a smooth path is
created in real time (Harvey, 1990; Katharina, 2005).

By combining the above data and signals, it is possible to obtain
real-time information of an occurrence and its location, from
which simple incidents can be constructed.
4.2. Pre-analysis

The direct information collected from sensors may contains
noises and has to be processed prior to becoming an incident that
concerns managers, and thus to be reconstructed as formal format
based on user definitions. Therefore, the messages need to be
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pre-analyzed, which involves computation or functions to remove
duplicated data, accumulating data over time intervals and classi-
fying information for use. The pre-analysis of incident information
provides clarity in recognizing information and the most directly
observable behavior of the workers.

Basic incidents form the major part of the process, such as the
entrance of a BLE on a work site at time t and a complete incident
as a BLE exits the site. The information collected includes Boolean
variables associated with a basic behavior state, as well as data for
simple incidents derived from tracking the worker’s location, i.e.
the entrance to and exit from a marked region. The focus is on dis-
crete incidents, such as the start and finish of construction pro-
cesses, and arrival and departure from locations. The discrete
time index is denoted by N. For basic incidents, are used to repre-
sent the procedures.

4.3. Recognition of key regions

After processing basic incidents from the collected information,
complex incidents can then be defined. By using rules based on
logical operators and sequence, the defined hazardous region dis-
tribution can reduce cost and increase productivity (Soltani and
Fernando, 2004). In hazard zone modeling, incidents are deter-
mined using an attribute hierarchy. Hazard zones differ from each
other according to the presence of site objects and positions.
According to the degree of risk and dimension involved, dangerous
regions are divided approximately into three levels that vary in
terms of their probability of being inside or outside the hazard
zones or safety areas surrounding the targets. The extent of the
hazard zone from the object’s boundary is defined by the cate-
gories of ‘hazardous’, ‘risky’, ‘admonitory’ and ‘safe’. ‘Hazardous’
regions are dangerous regions such as large ditches where workers
can sustain serious injury if they fell, while ‘risky’ regions are
regions where there is a possible danger, such as under scaffolding
with potential safety risks from falling objects or collapse. To allow
workers to respond to dangers, ‘admonitory’ regions are set regions
around identified hazards (Soltani and Fernando, 2004). Regions
without any danger are defined as ‘safe’. The distribution of the
hazard zones across the construction site is represented by the fol-
lowing heuristics.

Certain static hazard are widely distributed on construction
sites, where the hazardous area has a permanent position with
fixed admonitory zones as described in Fig. 3(a), with a certainty
that workers would be in danger if the areas were entered. A typ-
ical example occurs when a ditch is being excavated, the boundary
of the ditch defines the hazardous zone and the extent of the
exposed edges as the admonitory region. Usually a fence located
between the safe and warning regions prevents workers from
becoming too close to the ditch. The hazardous region of the ditch
is surrounded by a safe area, with static hazards being located
inside the boundary. Another example is working on scaffolding,
which has a limited safe region. When workers walk outside or
close to the boundary of the scaffold, they are given a warning to
prevent falling. As Fig. 3(b) shows, most falls from ladders, scaf-
folds, roofs and structures are of this kind. Hence, the core regions
of the ladders scaffolds, roofs and structures are marked as safe
regions and band regions along edges are admonitory regions. In
addition, the rest regions without platforms or supports are
regarded as hazardous regions.

Uncertain static hazards are areas where the objects are located
permanently on a construction site without certainty of harm to
the workers inside. That is, when workers step inside this area,
there is a possibility of being hurt. The possibility of being struck
by objects or projectiles is one example of this category and applies
to most accidents, since workers have a tendency to choose a con-
venient but possibly dangerous way of working rather than one
that is safe but inconvenient. Therefore, this distribution is often
ignored by users and the circumscription between risky and
admonitory regions is fuzzy in comparison with a static certain
hazard distribution and can only be determined by experience.
As Fig. 3(c) indicates, minor injuries or trips caused by stepping
on nails or wedges, or electrocution by touching exposed wires
are all potential static construction site hazards.

Uncertain dynamic hazards represent another kind of hazard
involving movement. Thus, even if workers avoid fixed hazard
areas and stationary, it is still possible to be injured or experience
a near-miss from collisions. As vehicles, cranes and equipment
move, workers can be accidently injured by falls and collisions.
Since both workers and the hazards are moving, the maximum
effective area boundary within a fixed distance is utilized to con-
struct dynamic uncertain hazard areas. For example, as a tower
crane produces moving hazard zones under its boom while lifting
or slewing in a circle, moving vehicles occupy the ribbon illustrated
in Fig. 3(d).
4.4. Recognition of incidents

After establishing the hazardous areas, an incident recognition
algorithm is integrated into the monitoring system for automati-
cally classifying incidents. Basic incidents are tracked by the BLE.
However, it is only through the recognition of incidents that the
system can filter them in terms of complexity. Additional observ-
ables are user commands, actions or documents. Considering the
significant sensitivity of wave signals by BLE, the monitoring sys-
tem is highly sensitive – resulting in potential misreads of walk-
paths. Therefore, duration and frequency limitation is needed to
eliminate errors. To do this, the duration of workers in different
regions are computed by recording their entrance and exit times.
The algorithm proposes a time-bounded limitation consisting of
categories during a prescribed period. The maximum duration time
is denoted by Tþ

limit for excluding work that has to be completed in
dangerous areas. The minimum duration time T�

limit aims to remove
information errors so that users can obtain sufficiently accurate
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walk-path data. The influence of duration can be expressed as a
mathematical function

f tðtÞ ¼
0 if t < T�

limit
Tþ
limit

�T�limit
2 � Tþ

limit
þT�limit
2 � t

��� ��� if T�
limit 6 t 6 Tþ

limit

0 if t > Tþ
limit

8>><
>>: ð1Þ

where t is the duration time the user remains in the marked zones
and ft(t) is the duration discriminant of the worker’s behavior. The
duration value can be used to continuously modify the time limita-
tion and therefore ft(t) can be used to estimate the hazard.

A frequency limitation is also applied to complete the algo-
rithm. Termed Nlimit, this is used to remove cases such as a worker
stepping into a ditch during earthworks. The piecewise function
below describes the frequency filter as:

f NðnÞ ¼
1� Nlimit�n

Nlimit
if n 6 Nlimit

0 if n > Nlimit

(
ð2Þ

where n, a positive integer, is the number of times that a worker
steps into a special region.

Calculating the duration and frequency of incidents enhances
the accuracy of the walk-path and identifies user incidents that
occur occasionally, deliberately or because of communication
errors.

4.5. Recognition of states

To monitor process effectively, the discrete statistical computa-
tion of the states on a construction site is used. As the states of the
project or workers are not directly observable, the RTLS data is col-
lected and analyzed at time intervals, where each state corre-
sponds with special incidents occurring each day. Assumptions
are made to divide safety performance temporarily into four states
according to the frequency of incidents. As Table 1 shows, the
states and incidents observed are recorded on an interrelated
map. N with corner marks are practical thresholds based on expe-
riences, that small thresholds leading to sensitive warning systems
and vice versa.
The monitoring system is modeled in terms of states, which are
obtained from the statistical result of the RTLS recorded worker
path during each day of construction. The algorithm divides the
statistical computation from two views according to the severity
rate involved. If a worker receives no warnings and avoids haz-
ardous regions, the system registers a normal state. However, if a
warning alert is recorded more than once, the mode changes to
an incidence state, drawing the attention of site management. Both
near-miss and accident states are classified by injury level and pro-
ject impact from the RTLS data. Generally, the near-miss state
relates to potential minor injuries associated with uncertain haz-
ardous areas while the accident state relates to grievous or fatal
injuries associated with certain or uncertain hazardous regions.

From the overall project view, the critical value is estimated
according to the specific site states. In consideration of a lower
fault-tolerance in construction projects, the algorithm expands
the limitation compared with the individual view. Thus, the nor-
mal project state involves restricting the frequency of workers
entering admonitory regions with a warning, which is denoted
by NA1. The incident state can include incidents such as entering
hazardous regions NH1 times without injury but which may cause
project disruption. A near-miss state represents hazardous inci-
dents between NH1 and NH2, which may also lead to project disrup-
tion. Finally, the accident state represents more than NH2 accident
incidents including critical injury events.

The four identified states define daily worker safety perfor-
mance. Since walk-paths randomly extend over a construction site,
the walk-path states are predicted according to a random probabil-
ity distribution or stochastic.
5. Modeling system for state monitoring

Since the accidents on construction sites are results of a variety
of causations, therefore state sequence identified before could be
regarded as a stochastic process. To monitor the process, DTMC
is proved to be a feasible solution in manufacturing industry (Hu
et al., 2014). Markov-type models requires no deep insight into
the mechanisms of dynamics, however it could indicate states as
a guide and simulation of future, which is also relatively easy to



Table 1
State recognition from incident frequency.

Frequency of incidents

Symbols States Safe Admonitory Hazardous Influences

Personal State S1 Normal (0, +1) – – –
S2 Incidence [0, +1) (0, +1) – Shock
S3 Near-miss [0, +1) (0, +1) (0, +1) Minor Injuries/Shock
S4 Accidents [0, +1) (0, +1) (0, +1) Grievous/Fatal Injuries

Project State S1 Normal (0, +1) [0, NA1) – –
S2 Incidence [0, +1) [NA1, NA2) [0, NH1) Disturbances
S3 Near-miss [0, +1) [NA2, +1) [NH1, NH2) Suspension
S4 Accidents [0, +1) (0, +1) [NH2, +1) or [1, +1) Fatal Event Stand-down
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infer from small number of historical state by simple calculation
(Deng et al., 2015; Von Hilgers and Langville, 2006). Just like the
hypothesis of DTMC, the project process operates without a long-
term memory, and once an accident has occurred, the likelihood
of the same accident type occurring again the following day is
low due to the use of increased project warnings and prevention
measures. Since the Markov property is also fit for construction
industry, the state sequence model assumes that the future state
is influenced by the present state, but independent of the past
state. Moreover, the model assumes the transition from state to
state as an unchanging variable to simplify the sequence. Thus,
the states of accidents are constant, even if an on-site worker expe-
rience increases or physical function decreases.

5.1. State transition

The set of four distinct states, comprising normal, incidence,
near-miss and accident states, are respectively denoted as S1, S2,
S3 and S4. The system contains a transition matrix according to
the regular minimum discrete time intervals. The matrix consists
of probabilities associated with the circumstances between states
and state transitions. Additionally, the state transitions and their
interrelationships differ from two views: individual workers and
the overall project.

As the cause of an accident is difficult to measure and analyze, a
stochastic model is used to analyze the states. Although it is possi-
ble to identify the time and severity of an accident from historical
data, the labor and project states have no certain causality conse-
quences. According to the proposed transition matrix, every prob-
abilistic state is derived from a pre-processer state except the
current and predecessor state. This relationship can be expressed
as a mathematical function:

PðXtþ1 ¼ xtþ1jX1 ¼ x1;X2 ¼ x2; . . . ;Xt ¼ xtÞ ¼ PðXtþ1 ¼ xtþ1jXt ¼ xtÞ
ð3Þ

where time corresponds to the state changes as t = 1,2,3, . . . , and
the actual state at time t is denoted by Xt. To estimate the active
states, cij(u) denotes the probability of a transition from state Si to
Sj during the period u, as a data-driven parameter from historical
RTLS records

cijðuÞ ¼ PðXtþu ¼ SjjXt ¼ SiÞ i; j ¼ 1;2;3;4 ð4Þ

Suppose C is the matrix of state transition probabilities consist-
ing of cij, whose period is identified to be one day. Then, the tran-
sition matrix of the four states is expressed as

C ¼

c11 � � � c14

..

. . .
. ..

.

c41 � � � c44

2
6664

3
7775 ð5Þ
where the diagonal entries cii represent the probabilities of remain-
ing in the same state and all entries are positive. Since the probabil-
ities obey standard stochastic constraints and come from the

frequency of state occurrence,
P4

j¼1cij of each row is equals to 1.
The transition matrix has different variable values depending

on the recognition performance. From the project view, managers
focus on minimizing the disruption to project activities, even if
accidents have occurred. The transition matrix of this recognition
is illustrated in Fig. 4(a). However, from individual worker’s view,
an injured worker would not continue working following a major
accident. Thus, the model will result in a stationary distribution
at an accident state. As Fig. 4(b) shows, the mapping between nor-
mal, incidence, near-miss and accidence states is unidirectional,
while the related coefficients are zero.
5.2. Hidden interrelationship between observation and invisibility

As most construction site records only capture major accidents,
such as grievous or fatal injuries, it is difficult for managers to keep
track of safety incidents from past projects. The increased uptake of
automated technology and techniques on construction sites has
resulted in the capture of a large amount of process data, which
can aid project decision-making. By drawing on the interrelated
network of observable and invisible data, the state prediction accu-
racy can be improved without losing any related information.

As Fig. 5 shows, the statistical output produced by the RTLS is
dependent on observable data analysis. The modeled stochastic
incidents within hidden states reveal interrelationships between
the frequency and duration of incidents, the severity of accidents
and the other interactions between workers and hazards. The inci-
dents include normal tasks, warning alerts and the nature of acci-
dents, which all pass through the recognition algorithm for
processing.

As Fig. 6 illustrates, the Markov Chain is invisible and thus the
observer can determine the current state from the information
offered by the RTLS. The random variable Xt is the actual hidden
state at time t, and Yt is the observations of entering the hazardous
regions. The arrows in the diagram denote conditional dependen-
cies. This demonstrates that the conditional probability distribu-
tion of the hidden variables depends only on the value of the
hidden variable Xt�1, as the prior values have no influence as
defined by the Markov Chain. The probability of the state is deter-
mined by its definition and on the frequency of incidents. Similarly,
if the model can predict future state sequences, it can also simulta-
neously predict the value of the observed variable Yt depending on
the value of the hidden variable Xt

piðyÞ ¼ PðYt ¼ yjXt ¼ SiÞ i ¼ 1;2;3;4 ð6Þ

where pi(y) denotes the probability of visible variables under the
state Si. To simplify computation, the function assumes P(y) is the



Fig. 4. State transition diagram.

Fig. 5. Interrelationship between states and observations.

Fig. 6. Time series of observations and invisibilities.
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matrix of interrelated transition, where diagonal entries are defined
as pi(y) and the rest position is zero.

PðyÞ ¼
p1ðyÞ � � � 0

..

. . .
. ..

.

0 � � � p4ðyÞ

2
664

3
775 ð7Þ

This probability function can be used to estimate the expecta-
tion of incidents per interval, on the condition that the initial state
is already known through history or provided by domain experts.
Assuming that workers commence work from their first day on a
construction site until the end of a project, the situation is defined
from normal, incidence, near-miss and accident states. As denoted
previously, Xt represents the state on the day t, with X0 as the ini-
tialization, followed by the Discrete-Time Markov Chain sequence.

qi ¼ PðX0 ¼ SiÞ i ¼ 1;2;3;4 ð8Þ

where qi denotes the probability of the initial states. Therefore, the
frequency, duration and severity of incidents can be expressed as
vectors using the recognition rules above, denoted by Yt. On the
condition that the process is initialized based on the preceding def-
inition, the probability of the observation y is

PðYtÞ ¼ ½q1; q2; q3; q4�
c11 � � � c14
..
. . .

. ..
.

c41 � � � c44

2
664

3
775

t�1 p1ðyÞ � � � 0

..

. . .
. ..

.

0 � � � p4ðyÞ

2
664

3
775

1
..
.

1

2
64

3
75

¼ QCt�1PðyÞ10

ð9Þ
where P(Yt) is the probability of monitoring Yt on day t, based on a
constant transition matrix and Q denotes the initial probability vec-
tor of states that can be monitored from the beginning of the
project.

In recognition of the definition above, the two parameters are
defined from two views, namely transition probability and emis-
sion probability. As all four states are possible each day and any
one transition probability can be determined when other probabil-
ities are known, there are at least a total of 12 transition and 4
emission parameters for each view. In an actual project, historical
records can produce the transition matrix from an analysis of event
likelihood and experience, strengthening the validity of data in
comparison to artificially determining the states.
6. Case study and result

A construction project case study is used to illustrate the appli-
cation of the DTMC model. In this case, it is assumed that the site
managers employ the algorithm without modeling accident causa-
tion. The following describes the monitoring functionality of states
based on the RTLS and admonitory observations.

6.1. Incident monitoring

The site managers tracked the walk-path and warning informa-
tion of nine experienced workers and the hazardous regions on a
construction site at weekly intervals. This involves five steel fixers,
two concrete operators, a carpenter and a welder. Each worker
wore a helmet with the sensors and RTLS tags. Once the work pro-
cess commenced, the workers were electronically logged into the
monitoring system with their related information by scanning
the RFID tags, allowing the managers to monitor activity in real-
time. The monitoring system recorded the path, timestamp, and
assessed whether the coordinates of moving objects were within
hazardous or admonitory areas with a real-time frequency of
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5 Hz. The rule recognition and pre-analysis data were then pro-
cessed by the filter, which extracted simple incidents and smooth
walk-paths for further analysis.

To calibrate the system, the Nlimit values were initially set quite
high and the frequency of a single worker, tasked with the placing
of reinforcement, entering admonitory and hazardous regions was
closely recorded as shown in Table 2. The recorded regions
included the foundation ditch and areas under the crane boom.
The Nlimit values were then gradually lowered to more accurately
represent the region state, with the frequency of the normal state
being dropped to near zero when no warnings were recorded over
a daily period.

From the project view, the observations of the nine workers
were summarized for further analysis. The managers then estab-
lished critical values based on the project’s fault tolerance. This
resulted in frequency limitations of 225 and 25 respectively. Thus,
if the workers’ entered any admonitory or hazardous region over
225 or 25 times respectively, the daily state was automatically cat-
egorized as ‘admonitory’ or ‘near-miss’ as a minimum.

Table 2 presents the results of the case study, where there were
no injuries and only includes uncertain hazardous regions. The
case focuses on the frequency of alerts. Detailed statements
explaining the distribution of the warnings, the extent of worker
tasks and project processes per day may also be included. Cur-
rently, the algorithm analyzes the frequency, duration and severity
of incidents. By utilizing basic figures instead of complex incidents,
the monitoring system can tolerate more information in a big-data
environment.
6.2. State monitoring

According to the Hong Kong Housing Authority, the Hong
Kong construction industry accident rate was 40.8 per 1000
workers and recorded 22 fatal accidents among 3232 incidents
in 2013 (Hong Kong Housing Authority, 2015), which means
the statistical probability of state ‘accidents’ (S4) is 0.0408 and
the sum of the left three states’ probabilities is 0.9592. Mean-
while the case results indicate the proportion of normal, inci-
dences and near-miss states is 4:2:1. Since the frequency of
warning incidents is far greater than near-misses and accidents,
ignoring the low accident rate, the probabilities of ‘normal’, ‘in-
cidents’ and ‘near-misses’ states could be assessed by dividing
0.9592 in perspective. Thereafter, the initially estimated four-
state proportions are:

Q ¼ ½q1; q2; q3; q4� ¼ ½0:5481; 0:2741; 0:1370; 0:0408� ð10Þ

To satisfy the needs of actual construction processes, managers
are encouraged to predict states based on current situations and
draw upon historical records to improve accuracy and computa-
tional efficiency. In this case, the control simulated state sequence
using a Monte Carlo method from the project view was conducted
involving up to 10,000 iterations based on the proportions in (10).
Accumulated counting was used to derive the transfer probability
needed to calculate the one-step transition from state to state,
which is a component of the transition matrix
Table 2
Monitoring incidents variables.

Time 1st week 2nd week 3rd

Personal States Admonitory 23 11 20
Hazardous 0 4 6
States S2 S3 S3

Project States Admonitory 220 205 319
Hazardous 0 7 23
States S1 S1 S3
C ¼

0:5488 0:2747 0:1401 0:0364
0:5419 0:2805 0:1439 0:0337
0:5395 0:2722 0:1446 0:0437
0:5225 0:2732 0:1406 0:0637

2
6664

3
7775 ð11Þ

With the transition matrix and the initial distribution of states
established, the algorithm operates within a stochastic prediction
of state sequence. Fig. 7(a) shows the results of the simulations,
where the upper state is the tentative basic sequence selected from
the first 250 days; the middle is the predicted state sequence from
the DTMC model; and the bottom state is the combined frequency
of the normal and incidence states. Table 3 summarizes the com-
parative frequencies involved, based on the first 250 and
1000 days, indicating that the DTMC predictor decreases the possi-
bility of accident states while controlling the prediction for normal
and incidence states. The results show the maximum and mini-
mum relative deviations between the two state sequences is 64%
and 4% respectively when the prediction time is short. For long-
term prediction, stability decreases, while the estimation of the
accident state increases. Despite this, the relative deviation ranges
from 10% to 17%, which is expected to be improved in future
research to increase predictive power and robustness.

Compared with the simulated state sequence completed by
Monte Carlo method, the predicted state sequence completed by
DTMC contains more normal states in both short-term and long-
term that may be the result of the different sensitivities of the
two methods. State transition parameter matrix of DTMC is
derived from the updating data, summarizing the essential
changes between states, leading to heighten sensitivity over the
dynamic process. It seems to be more realistic that accidents will
decrease with the development of protective equipment and man-
agement. Meanwhile computational requirements of both meth-
ods are modest and achievable. Therefore DTMC is relatively
efficiency to extract from time series sequences rather than Monte
Carlo. Moreover, the simulation carried out without deep insights
into the mechanisms of the accident causations, yet indicates state
sequences and hence performs as a guide to promote.

The number of states per week was also analyzed. The top
sequence row in Fig. 7(b) shows the initial sequence, followed by
the prediction in the middle sequence row and the control simu-
lated sequence in the bottom row. The width of the lines repre-
sents normal, incidence, near-miss and accident states in fine to
heavy lines respectively. The comparative line chart illustrates
the difficulty for the algorithm to predict the state on an exact
marked day. Although the frequency trends are in the same direc-
tion of the long-term distribution, it demonstrates the need for
future research to improve performance.

Since the simulated case is static, the state sequences do not
change over time. However, on a construction site, the accident
rate would generally decrease with the development of applied
techniques to prevent further accidents, suggesting the transition
matrix would change after a new state is added in the sequence
each day. The research indicates the monitoring system is feasible
in accidence state detection and effective in real-time to enable
managers to respond promptly to such disruptions during
construction.
week 4th week 5th week 6th week 7th week

3 9 3 18
0 3 6 0
S2 S3 S3 S2

93 197 242 267
2 8 18 9
S1 S1 S2 S2



Fig. 7. Comparision of simulated and predicted state sequence.

Table 3
Comparision of simulated and predicted state frequency.

States S1 S2 S3 S4

Simulated state sequence (250) 128 77 34 11
Predicted state sequence (250) 134 (+6,+4%) 81 (+4,+5%) 31 (�3,�9%) 4 (�7,�64%)
Simulated state sequence (1000) 500 304 150 46
Predicted state sequence (1000) 552 (+52,+10%) 281 (�23,�8%) 129 (�21,�14%) 38 (�8,�17%)

86 H. Li et al. / Safety Science 84 (2016) 78–87
7. Conclusion

This paper presents a stochastic state sequence mathematic
model for accident prediction in a BLE-enabled construction site
using RTLS data. Algorithms are designed to predict hazardous
regions, incidents and states to be monitored from both individual
and project views. The algorithms are based on critical values to
allow users to easily modify state definitions pending additional
information from historical records and actual situations. Addi-
tionally, a DTMC model is developed, based on the hidden interre-
lationship between site observations and invisibilities, to predict
possible states on a construction site and dynamically detect dis-
ruption. Finally, a case study is presented to demonstrate the fea-
sibility of the developed method.

Future research needs to focus on improving the accuracy of the
method with less reliance on historical data and further define the
strict interrelationships between the observations and hidden
states. Thiswill allow greater predictive power from the actual state
sequence, such as the frequency of warnings. Additionally, the sys-
tem needs to empirically tested on future construction sites to col-
lect interrelated event information including frequency, duration
and severity. In light of the positive influence of pro-activities in pre-
ventingaccidentsandpost-activities indecreasingaccident severity,
more functionsneed to be integrated to further optimize the process
andenable amoredetailedanalysis of real-timecases. Therefore, the
model can be customized for specific construction projects and the
workers involved. Currently, the predictionmethod is primarily sui-
ted to the big-data environment of construction projects. However,
with future improvements, it could be adapted to other project con-
texts and improving the integration of information derived from
new data collection and prediction techniques.
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